Химия. Тест по биологии «Молекулярно-генетический уровень Органические вещества в живой природе

Задания части А. Выберите один правильный ответ из четырех предложенных

А1. Низшим уровнем организации живого является:

1) атомный

2) клеточный

3) молекулярный

4) организменный

А2. Среди пеерчисленных веществ не является биологическим полимером:

2) глюкоза

3) гликоген

4) гемоглобин

А3. Неорганическими веществами клетки являются:

1) углеводы и жиры

2) нуклеиновые кислоты и вода

3) белки и жиры

4) вода и минеральная вода

А4. Органические вещества клетки, обеспечивающие хранение наследственной информации и передачу ее потомкам, основа ее генетического аппарата:

3) углеводы

4) нуклеиновые кислоты

А5. Из перечисленных углеводом моносахаридом является:

2) крахмал

3) сахароза

4) фруктоза

А6. Молекулы липидов состоят из:

1) аминоксилот

2) моносахаридов

3) воды и минеральных веществ

4) глицерина и высших жирных кислот

А7. По сравнению с окислением 1 г углеродов при оксилении жиров такой же массы образуется энергии:

1) меньше в два раза

2) больше в два раза

3) больше в четыре раза

4) одинаковое количество

А8. Органические вещества, являющиеся основным строительным материалом структур клетки и принимающие участие в регуляции процессов ее жизнедеятельности, - это:

1) белки

3) углеводы

4) нуклеиновые кислоты

А9. Все многообразие белков образуется за счет различного сочетания в их молекулах:

1) 4 аминокислот

2) 20 аминокислот

3) 28 аминокислот

4) 56 аминокислот

А10. Нивысший уровень пространственной структурной конфигурации молекулы гемоглобина:

1) первичный

2) вторичный

3) третичный

4) четвертичный

А11. Мономерами молекул нуклеиновых кислот являются:

1) нуклеотиды

2) моносахариды

3) аминоксилоты

4) высшие жирные кислоты

А12. В состав ДНК входит сахар:

2) глюкоза

3) фруктоза

4) дезоксирибоза

А13. Укажите пару комплементарный нуклеотидов в молекуле ДНК:

2) А-Т

А14. Для участка ДНК АЦЦГТААТГ укажите комплементарую цепь:

1) ААГГТЦАГТ

2) ТГГЦТААЦЦ

3) ТЦЦГТТАЦГ

4) ТГГЦАТТАЦ

А15. В состав АТФ входиьт:

1) рибоза, аденин, три остатка фосфорной кислоты

2) рибоза, аденин, один остаток фосфорной кислоты

3) рибоза, дезоксирибоза, три остатка фосфорной кислоты

4) дезоксирибоза, аденин, три остатка фосфорной кислоты

А16. АТФ играет важную роль в метаболизме организмов, так как:

1) является структурной основой нуклеотидов

2) содержит микроэнергический связи

3) обычно является конечным продуктом обмена веществ

4) ее можно быстро получить из среды, окружающей организм

А17. К водорастворимым относится витамин:

2) С

А18. По химическому составу большинство ферментов являются:

2) белками

3) углеводами

4) нуклеиновыми кислотами

2) вирусы

3) бактерии

4) одноклеточные растения

А20. Вирусы состоят из:

1) целлюлозной оболочки, цитоплазмы, ядра

2) белковой оболочки и цитоплазмы

3) нуклеиновой кислоты и белковой оболочки

4) нескольктх микроскопических клеток

Задания части В. Выберите три правильных ответа из шести предложенных

В1. Молекула ДНК отличается от иРНК тем, что:

1) она свернута в спираль

2) состоит из двух полинуклеотидных цепочек

3) состоит из одной полинуклеотидной цепочки

4) обладает способностью самоудваивания

5) не обладает способностью самоудваивания

6) служит матрицей для сборки полипептидной цепи

В2. Для углеводов характерны следующие функции:

1) сигнальная

2) структурная

3) транспортная

4) регуляторная

5) энергетическая

6) ферментативная

Установите соответствие между содержанием первого и второго столбцов

В3. Соотнесите органическое вещество и функцию, выполняемую им в клетке и/или в организме

а б в г д
5 1 4 2 3

Установите правильную последовательность биологических процессов, явлений, практических действий

В4. Установите последовательность образования структуры молекулы белка гемоглобина

а) скручивание молекул белка в спираль

б) образование пептидных связей между аминокислотами и формирование пептидной цепи

в) объединение нескольких глобул

г) скручивание молекулы белка в клубок

Углеводы состоят из...

углерода, водорода и кислорода

углерода, азота и водорода

углерода, кислорода и азота

Углеводы , или сахариды , - одна из основных групп органических соединений. Они входят в состав клеток всех живых организмов. Углеводы состоят из углерода, водорода и кислорода. Название, они получили потому, что у большинства из них соотношение водорода и кислорода в молекуле такое же, как и в молекуле воды.

Общая формула углеводов: Сn (Н 2 О)m. Примерами могут служить глюкоза — С 6 Н 12 О 6 и сахароза — С 12 Н 22 О 11 . В состав производных углеводов могут входить и другие элементы. Все углеводы делятся на простые, или моносахариды , и сложные, или полисахариды . Из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза.

Функции углеводов: энергетическая, строительная, защитная, запасающая.

Определи из предложенных полисахариды.

крахмал, гликоген, хитин…

глюкоза, фруктоза, галактоза

рибоза, дезоксирибоза

Ди- и полисахариды образуются путём соединения двух и более моносахаридов. Дисахариды по своим свойствам близки к моносахаридам. И те, и другие хорошо растворимы в воде и имеют сладкий вкус. Полисахариды состоят из большого числа моносахаридов, соединённых ковалентными связями. К ним относятся крахмал, гликоген, целлюлоза, хитин и другие.

Нарушение природной структуры белка.

денатурация

ренатурация

дегенерация

Нарушение природной структуры белка называют денатурацией . Она может происходить под воздействием температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остаётся в виде полипептидной цепи. Этот процесс частично обратим: если не разрушена первичная структура, то денатурированный белок способен восстанавливать свою структуру. Таким образом, что все особенности строения макромолекулы белка определяются его первичной структурой.

Функция, благодаря которой происходит ускорение биохимических реакций в клетке.

каталитическая

ферментативная

оба ответа правильные

Ферменты (или биокатализаторы) – это молекулы белков, работающие как биологические катализаторы, в тысячи раз увеличивающие скорость химических реакций. Чтобы крупные органические молекулы вступили в реакцию, им недостаточно простого контакта. Необходимо, чтобы функциональные группы этих молекул были обращены друг к другу и никакие другие молекулы не мешали их взаимодействию. Вероятность того, что молекулы сами сориентируются нужным образом, ничтожна мала. Фермент же присоединяет к себе обе молекулы в нужном положении, помогает ми избавиться от водяной плёнки, поставляет энергию, убирает лишние части и освобождает готовый продукт реакции. При этом сами ферменты, подобно другим химическим катализаторам, не изменяются в результате прошедших реакций и выполняют свою работу снова и снова. Для функционирования каждого фермента имеются оптимальные условия. Одни ферменты активны в нейтральной, другие – в кислой или щелочной среде. При температуре свыше 60ºС большинство ферментов не функционирует.

Функция сократительных белков.

двигательная

транспортная

защитная

Двигательная функция белков выполняют особые сократительные белки. Благодаря им двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов.

Жгутик всех эукариотических клеток имеет длину около 100 мкм. На поперечном срезе можно увидеть, что по периферии жгутика расположены 9 пар микротрубочек, а в центре — 2 микротрубочки. Все пары микротрубочек связаны между собой. Белок, осуществляющий это связывание, меняет свою конформацию за счёт энергии, выделяющейся при гидролизе АТФ. Это приводит к тому, что пары микротрубочек начинают двигаться друг относительно друга, жгутик изгибается и клетка начинает движение.

Функция белков, благодаря которой гемоглобин переносит кислород из лёгких к клеткам других тканей и органов.

транспортная

двигательная

оба ответа правильные

Важное значение имеет транспортная функция белков. Так, гемоглобин переносит кислород из лёгких к клеткам других тканей и органов. В мышцах эту функцию выполняет белок гемоглобин. Белки сыворотки крови (альбумин) способствуют переносу липидов и жирных кислот, различных биологически активных веществ. Присоединяя кислород, гемоглобин из синеватого становится алым. Поэтому кровь, в которой много кислорода, отличается по цвету от крови, в которой его мало. Транспортные белки в наружной мембране клеток переносят различные вещества из окружающей среды в цитоплазму.

Функция белка, поддерживающая постоянную концентрацию веществ в крови и клетках организма. Участвуют в росте, размножении и других жизненно важных процессах.

ферментативная

регуляторная

транспортная

Регуляторная функция присуща белкам – гормонам. Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах. В присутствии вещества-регулятора начинается считывание определённого участка ДНК. Производимый данным геном белок начинает длинную цепочку превращений веществ, проходящих через ферментативный комплекс. В конце концов вырабатывается вещество-регулятор, которое останавливает считывание или переводит его на другой участок. При этом именно информация ДНК определяет, какие вещества производить, а конечный продукт синтеза блокирует ДНК и приостанавливает весь процесс. Другой путь: ДНК блокируется веществом, появившимся в результате деятельности управляющих систем организма: нервной или гуморальной. Конечно, в указанной цепи может быть большое количество посредников. Есть, например, целая группа белков-рецепторов, которые посылают управляющий сигнал в ответ на изменение внешней или внутренней среды.

В состав молекулы ДНК входят азотистые основания...

аденин, гуанин, цитозин, тимин

аденин, гуанин, лейцин, тимин

нет правильного ответа

В состав молекулы ДНК входят четыре типа азотистых оснований: аденин, гуанин, цитозин и тимин. Они и определяют названия соответствующих нуклеотидов.

Определи состав нуклеотида.

остаток фосфорной кислоты, цитидин, углевод

азотистое основание, углевод, ДНК

азотистое основание, углевод, остаток фосфорной кислоты

Каждый нуклеотид состоит из трёх компонентов, соединённых прочными химическими связями. Это азотистое основание, углевод (рибоза или дезоксирибоза) и остаток фосфорной кислоты.

Название связи между аденином и тимином при образовании двуцепочной молекулы ДНК.

одинарная

двойная

тройная

Молекула ДНК представляет собой двойной ряд нуклеотидов, сшитых в продольном и поперечном направлении Каркасом её структуры служат углеводы, надёжно связанные фосфатными группами в две цепочки. Между цепями «лесенкой» расположены азотистые основания, притянутые друг к другу слабыми водородными связями (в случае аденин-тимин — связь двойная ).

Определи состав аденозинтрифосфата:

аденин, урацил, два остатка фосфорной кислоты

аденин, рибоза, три остатка фосфорной кислоты

Нуклеиновая кислота аденозинтрифосфата (АТФ) состоит из одного-единственного нуклеотида и содержит две макроэргические (богатые энергией) связи между фосфатными группами. АТФ совершенно необходима в каждой клетке, так как она играет роль биологического аккумулятора — переносчика энергии. Она нужна везде, где происходит запасание энергии или её освобождение и использование, то есть практически в любой биохимической реакции, поскольку подобные реакции происходят в каждой клетке почти непрерывно, каждая молекула АТФ разряжается и вновь заряжается, например, в организме человека в среднем один раз в минуту. АТФ содержится в цитоплазме, митохондриях, пластидах и ядрах.

вирус

Органические вещества в живой природе

Органические вещества лежат в основе всей живой природы. Растения и животные, микроорганизмы и вирусы - все живые существа состоят из огромного количества различных органических веществ и сравнительно небольшого числа неорганических. Именно соединения углерода, благодаря их великому разнообразию и способности к многочисленным химическим превращениям, явились той основой, на которой возникла жизнь во всех ее проявлениях. Носителями тех свойств, которые включаются в понятие «жизнь», являются сложные органические вещества, молекулы которых содержат цепи из многих тысяч атомов - биополимеры.

Прежде всего это белки - носители жизни, основа живой клетки. Сложные органические полимеры - белки состоят главным образом из углерода, водорода, кислорода, азота и серы. Их молекулы образованы соединением очень большого числа простых молекул - так называемых аминокислот (см. ст. «Химия жизни»).

Существует очень много разных белков. Есть белки опорные, или структурные. Такие белки входят в состав костей, образуют хрящи, кожу, волосы, рога, копыта, перья, чешую рыб. В состав мышц структурные белки входят вместе с белками, выполняющими сократительные функции. Сокращение мышц (важнейшая роль белков этого типа) - это превращение части химической энергии таких белков в механическую работу. Очень большая группа белков регулирует химические реакции в организмах. Это ферменты (биологические катализаторы). В настоящее время их известно более тысячи. Высокоразвитые организмы умеют вырабатывать еще и защитные белки - так называемые антитела, которые способны осаждать или связывать и тем обезвреживать проникшие извне в организм посторонние вещества и тела.

Наряду с белками важнейшие функции жизни несут нуклеиновые кислоты. В живом организме всегда происходит обмен веществ. Постоянно обновляется состав почти всех его клеток. Обновляются и белки клеток. Но ведь для каждого органа, для каждой ткани нужно изготовить свой особенный белок, со своим неповторимым порядком аминокислот в цепи. Хранители этого порядка - нуклеиновые кислоты. Нуклеиновые кислоты являются своего рода шаблонами, по которым организмы строят свои белки. Часто образно говорят, что в них записан код синтеза белка. Для каждого белка - свой код, свой шаблон. У нуклеиновых кислот есть еще одна функция. Они шаблоны и для самих нуклеиновых кислот. Это своего рода «запоминающее устройство», при помощи которого каждый вид живых существ передает из поколения в поколение коды построения своих белков (см. ст. «Химия жизни»).

Опорные функции в живой природе выполняют не только белки. В растениях, например, опорные, скелетные вещества - целлюлоза и лигнин. Это тоже полимерные вещества, но совсем другого типа. Длинные цепи атомов целлюлозы построены из молекул глюкозы, относящейся к группе Сахаров. Поэтому целлюлозу относят к полисахаридам. Строение лигнина до сих пор окончательно не установлено. Это тоже полимер, по-видимому, с сетчатыми молекулами. А у насекомых опорные функции выполняет хитин - тоже полисахарид.

Есть большая группа веществ (жиры, сахара, или углеводы), которые переносят и запасают химическую энергию. Они (вместе с белками пищи) являются запасным строительным материалом, необходимым для образования новых клеток (см. ст. «Химия пищи»). Множество органических веществ (витамины, гормоны) в живых организмах играют роль регуляторов жизнедеятельности. Одни регулируют дыхание или пищеварение, другие - рост и деление клеток, третьи - деятельность нервной системы и т. п. В живых организмах содержатся многочисленные вещества самых разнообразных назначений: красящие, которым мир цветов обязан своей красотой, пахучие - привлекающие или отпугивающие, защищающие от внешних врагов, и много других. Растения и животные, даже каждая отдельная клетка - это маленькие, но очень сложные лаборатории, в которых возникают, превращаются и разлагаются тысячи органических веществ. Многочисленные и разнообразные химические реакции протекают в этих лабораториях в строго определенной последовательности. Создаются, растут и затем распадаются сложнейшие структуры...

Мир органических веществ окружает нас, мы сами состоим из них, и вся живая природа, среди которой мы живем и которую мы постоянно используем, состоит из органических веществ.


Строение природного полимера - белка фиброина шелка. Отдельные полимерные цепи соединены между собой водородными связями (пунктир).

История исследований

Впервые существование вируса (как нового типа возбудителя болезней) доказал в 1892 году русский учёный Д. И. Ивановский и др . После многолетних исследований заболеваний табачных растений , в работе, датированной 1892 годом, Д. И. Ивановский приходит к выводу, что табачная мозаика вызывается «бактериями, проходящими через фильтр Шамберлана, которые, однако, не способны расти на искусственных субстратах».

Пять лет спустя, при изучении заболеваний крупного рогатого скота, а именно - ящура, был выделен аналогичный фильтрующийся микроорганизм. А в 1898 году, при воспроизведении опытов Д. Ивановского голландским ботаником М. Бейеринком , он назвал такие микроорганизмы «фильтрующимися вирусами». В сокращённом виде, это название и стало обозначать данную группу микроорганизмов.

В последующие годы изучение вирусов сыграло важнейшую роль в развитии эпидемиологии , иммунологии , молекулярной генетики и других разделов биологии. Так, эксперимент Херши - Чейз стал решающим доказательством роли ДНК в передаче наследственных свойств. В разные годы ещё как минимум шесть Нобелевских премий по физиологии и медицине и три Нобелевских премии по химии были вручены за исследования, непосредственно связанные с изучением вирусов.

Строение

Просто организованные вирусы состоят из нуклеиновой кислоты и нескольких белков, образующих вокруг неё оболочку - капсид . Примером таких вирусов является вирус табачной мозаики. Его капсид содержит один вид белка с небольшой молекулярной массой. Сложно организованные вирусы имеют дополнительную оболочку - белковую или липопротеиновую; иногда в наружных оболочках сложных вирусов помимо белков содержатся углеводы . Примером сложно организованных вирусов служат возбудители гриппа и герпеса . Их наружная оболочка - это фрагмент ядерной или цитоплазматической мембраны клетки-хозяина, из которой вирус выходит во внеклеточную среду.

Роль вирусов в биосфере

Вирусы являются одной из самых распространённых форм существования органической материи на планете по численности: воды мирового океана содержат колоссальное количество бактериофагов (около 250 миллионов частиц на миллилитр воды), их общая численность в океане - около 4·10 30 , а численность вирусов (бактериофагов) в донных отложениях океана практически не зависит от глубины и всюду очень высока . В океане обитают сотни тысяч видов (штаммов) вирусов, подавляющее большинство которых не описаны и тем более не изучены . Вирусы играют важную роль в регуляции численности популяций некоторых видов живых организмов (например, вирус дикования с периодом в несколько лет сокращает численность песцов в несколько раз).

Положение вирусов в системе живого

Происхождение вирусов

Вирусы - сборная группа, не имеющая общего предка. В настоящее время существует несколько гипотез, объясняющих происхождение вирусов.

Происхождение некоторых РНК-содержащих вирусов связывают с вироидами . Вироиды представляют собой высокоструктурированные кольцевые фрагменты РНК, реплицируемые клеточной РНК-полимеразой . Считается, что вироиды представляют собой «сбежавшие интроны » - вырезанные в ходе сплайсинга незначащие участки мРНК , которые случайно приобрели способность к репликации . Белков вироиды не кодируют. Считается, что приобретение вироидами кодирующих участков (открытой рамки считывания) и привело к появлению первых РНК-содержащих вирусов. И действительно, известны примеры вирусов, содержащих выраженные вироид-подобные участки (вирус гепатита Дельта).

Примеры структур икосаэдрических вирионов.
А. Вирус, не имеющий липидной оболочки (например, пикорнавирус).
B. Оболочечный вирус (например, герпесвирус).
Цифрами обозначены: (1) капсид, (2) геномная нуклеиновая кислота, (3) капсомер, (4) нуклеокапсид, (5) вирион, (6) липидная оболочка, (7) мембранные белки оболочки.

Отряд (-virales ) Семейство (-viridae ) Подсемейство (-virinae ) Род (-virus ) Вид (-virus )

Классификация Балтимора

Нобелевский лауреат, биолог Дэвид Балтимор, предложил свою схему классификации вирусов, основываясь на различиях в механизме продукции мРНК. Эта система включает в себя семь основных групп :

  • (I) Вирусы, содержащие двуцепочечную ДНК и не имеющие РНК-стадии (например, герпесвирусы , поксвирусы , паповавирусы, мимивирус).
  • (II) Вирусы, содержащие двуцепочечную РНК (например, ротавирусы).
  • (III) Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы).
  • (IV) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы , флавивирусы).
  • (V) Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы).
  • (VI) Вирусы, содержащие одноцепочечную молекулу РНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретровирусы (например, ВИЧ).
  • (VII) Вирусы, содержащие двуцепочечную ДНК и имеющие в своём жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B).

В настоящее время, для классификации вирусов используются обе системы одновременно, как дополняющие друг друга .

Дальнейшее деление производится на основе таких признаков как структура генома (наличие сегментов, кольцевая или линейная молекула), генетическое сходство с другими вирусами, наличие липидной оболочки, таксономическая принадлежность организма-хозяина и так далее.

Вирусы в массовой культуре

В литературе

  • S.T.A.L.K.E.R. (фантастический роман)

В кинематографе

  • Обитель зла » и его продолжениях.
  • В фантастическом фильме ужасов «28 дней спустя » и его продолжениях.
  • В сюжете фильма-катастрофы «Эпидемия » присутствует вымышленный вирус «мотаба», описание которого напоминает реальный вирус Эбола .
  • В фильме «Добро пожаловать в Зомбилэнд ».
  • В фильме «Лиловый шар ».
  • В фильме «Носители ».
  • В фильме «Я - Легенда ».
  • В фильме «Заражение ».
  • В фильме «Репортаж ».
  • В фильме «Карантин ».
  • В фильме «Карантин 2: Терминал ».
  • В сериале «Регенезис ».
  • В телесериале «Ходячие мертвецы ».
  • В телесериале «Закрытая школа ».
  • В фильме «Носители ».

В мультипликации

В последние годы вирусы нередко становятся «героями» мультфильмов и мультсериалов, среди которых следует назвать, например, «Осмозис Джонс» (США), 2001), «Оззи и Дрикс» (США , 2002-2004 гг.) и «Вирус атакует » (Италия , 2011).

Примечания

  1. На английском языке . В латинском языке вопрос о множественном числе данного слова является спорным. Слово лат. virus принадлежит редкой разновидности II склонения, словам среднего рода на -us: Nom.Acc.Voc. virus, Gen. viri, Dat.Abl. viro. Так же склоняются лат. vulgus и лат. pelagus ; в классической латыни множественное число зафиксировано только у последнего: лат. pelage , форма древнегреческого происхождения, где η<εα.
  2. Таксономия вирусов на сайте Международного комитета по таксономии вирусов (ICTV) .
  3. (англ.) )
  4. Cello J, Paul AV, Wimmer E (2002). «Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template». Science 297 (5583): 1016–8. DOI :10.1126/science.1072266 . PMID 12114528 .
  5. Bergh O, Børsheim KY, Bratbak G, Heldal M (August 1989). «High abundance of viruses found in aquatic environments». Nature 340 (6233): 467–8. DOI :10.1038/340467a0 . PMID 2755508 .
  6. Элементы - новости науки: Разрушая бактериальные клетки, вирусы активно участвуют в круговороте веществ в глубинах океана

Вспомните!

Чем вирусы отличаются от всех остальных живых существ?

Почему существование вирусов не противоречит основным положениям клеточной теории?

Состоят из органических веществ, что и клетки (белки, нуклеиновые кислоты)

Размножаются с помощью клеток

Какие вы знаете вирусные заболевания?

Грипп, ВИЧ, бешенство, краснуха, оспа, герпес, гепатит, корь, папиллома, полиомиелит.

Вопросы для повторения и задания

1. Как устроены вирусы?

Вирусы имеют очень простое строение. Каждый вирус состоит из нуклеиновой кислоты (или ДНК, или РНК) и белка. Нуклеиновая кислота является генетическим материалом вируса. Она окружена защитной белковой оболочкой - капсидом. Внутри капсида могут также находиться собственные вирусные ферменты. Некоторые вирусы, например вирус гриппа и ВИЧ, имеют дополнительную оболочку, которая образуется из клеточной мембраны клетки-хозяина. Капсид вируса, состоящий из многих белковых молекул, обладает высокой степенью симметрии, имея, как правило, спиральную или многогранную форму. Эта особенность строения позволяет отдельным белкам вируса объединяться в полную вирусную частицу путём самосборки.

2. Каков принцип взаимодействия вируса и клетки?

3. Опишите процесс проникновения вируса в клетку.

«Голые» вирусы проникают в клетку путём эндоцитоза - погружения участка клеточной мембраны в месте их адсорбции. Иначе этот процесс известен как виропексис [вирус + греч. pexis, прикрепление]. «Одетые» вирусы проникают в клетку путём слияния суперкапсида с клеточной мембраной при участии специфических F-белков (белков слияния). Кислые значения рН способствуют слиянию вирусной оболочки и клеточной мембраны. При проникновении «голых» вирусов в клетку образуются вакуоли (эндосомы). После проникновения «одетых» вирусов в цитоплазму происходит частичная депротеинизация вирионов и модификация их нуклеопротеида (раздевание). Модифицированные частицы теряют инфекционные свойства, в ряде случаев изменяются чувствительность к РНКазе, нейтрализующему действию антител (AT) и другие признаки, специфичные для отдельных групп вирусов.

4. В чём проявляется действие вирусов на клетку?

Подумайте! Вспомните!

1. Объясните, почему вирус может проявить свойства живого организма, только внедрившись в живую клетку.

Вирус-неклеточная форма жизни, у него нет никаких органоидов, выполняющих в клетках определенные функции, нет обмена веществ, вирусы не питаются, не размножаются самостоятельно, не синтезируют никаких веществ. У них есть только наследственность в форме какой-то одной нуклеиновой кислоты-ДНК или РНК, а также капсид из белков. Поэтому только в клетке хозяина, когда вирус встраивает свою ДНК (если это ретро-вирус, то сначала происходит обратная транскрипция и строится по РНК-ДНК) в ДНК клетки, могут образовываться новые вирусы. При репликации и дальнейшем синтезе клеткой нуклеиновых кислот и белков заодно воспроизводится и вся информация вируса, занесенная им, и собираются новые вирусные частицы.

2. Почему вирусные заболевания имеют характер эпидемий? Охарактеризуйте меры борьбы с вирусными инфекциями.

Распространяются быстро, воздушно-капельным путем.

3. Выскажите своё мнение о времени появления на Земле вирусов в историческом прошлом, учитывая, что вирусы могут размножаться только в живых клетках.

4. Объясните, почему в середине XX в. вирусы стали одним из главных объектов экспериментальных генетических исследований.

Вирусы быстро размножаются, ими легко заразиться, вызывают эпидемии и пандемии, могут служить мутагенами для человека, животных и растений.

5. Какие сложности возникают при попытках создать вакцину против ВИЧ-инфекции?

Так как ВИЧ уничтожает иммунную систему человека, а вакцина изготавливается из ослабленных или убитых микроорганизмов, продуктов их жизнедеятельности, или из их антигенов, полученных генно-инженерным или химическим путём. Иммунная ситема не выдержит этого действия.

6. Объясните, почему перенос вирусами генетического материала от одного организма к другому называют горизонтальным переносом. Как тогда, по вашему мнению, называют передачу генов от родителей детям?

Горизонтальный перенос генов (ГПГ) - процесс, в котором организм передаёт генетический материал другому организму, не являющемуся его потомком. Вертикальный перенос генов – это перенос генетической информации от клетки или организма к их потомству при помощь обычных генетических механизмов.

7. В разные годы как минимум семь Нобелевских премий по физиологии и медицине и три Нобелевских премии по химии были вручены за исследования, непосредственно связанные с изучением вирусов. Используя дополнительную литературу и ресурсы Интернета, подготовьте сообщение или презентацию о современных достижениях в области исследования вирусов.

Борьба человечества с эпидемией СПИДа продолжается. И хотя рано подводить итоги, определенные, без сомнения, оптимистические тенденции, все-такипрослеживаются. Так, биологам из Америки, удалось вырастить иммунные клетки, в которых вирус иммунодефицита человека размножаться не может. Этого удалось добиться с помощью новейшей методики, позволяющей влиять на работу наследственного аппарата клетки. Профессор Колорадского университета Рамеш Аккина и его коллеги спроектировали особые молекулы, которые блокируют работу одного из ключевых генов вируса иммунодефицита. Затем ученые изготовили искусственный ген, способный осуществлять синтез таких молекул, и с помощью вируса-носителяввели его в ядра стволовых клеток, которые в последствии и дают начало иммунным клеткам уже защищенным от ВИЧ-инфекции. Однако насколько эта методика окажется эффективной в борьбе со СПИДом, покажут только клинические испытания.

Еще 20 лет назад заболевание считалось неизлечимым. В 90-тые годы применялись только препараты короткоживущего интерферона-альфа. Эффективность такого лечения была очень низка. На протяжении последнего десятилетия «золотым стандартом» в терапии хронического гепатита С являлась комбинированная противовирусная терапия пегилированным интерфероном-альфа и рибавирином, эффективность которой в отношении элиминации вируса, то есть излечения гепатита С, достигает в целом 60-70%. При этом, среди больных, инфицированных 2 и 3 генотипами вируса, она составляет около 90%. В то же время, частота излечения у больных, инфицированных генотипом вируса С, до последнего времени составляла всего 40-50%.

1. Особенности жизнедеятельности (размеры)

2. Схема строения вируса

3. Схема проникновения в клетку, размножения

4. Стихи и загадки о вирусах

4.Загадки и стихи

У меня печальный вид, –

Голова с утра болит,

Я чихаю, я охрип.

Что такое?

Это – ... грипп

Подлый вирус этот грипп

Глова сейчас болит

Поднялась температура

И нужнате перь микстура

Заболела детка корью?

Это вовсе и не горе

Врач поможет, поспешит

Нашу детку излечит

На прививку я иду

Гордо к доктору приду

Шприц давайте и укол

Все готово? Я пошел

Ваша будущая профессия

1. Докажите, что базовые знания о процессах, происходящих на молекулярном и клеточном уровнях организации живого, необходимы не только биологам, но и специалистам в других областях естественных наук.

Биофизики, биохимики, не смогут обойтись без таких знаний. Физический и химический процессы протекают по одинаковым законам.

2. Какие профессии в современном обществе требуют знания строения и особенностей жизнедеятельности прокариотических организмов? Подготовьте небольшое (не более 7-10 предложений) сообщение о той профессии, которая вас наиболее впечатлила. Объясните свой выбор.

Системный биотехнолог. Специалист по замещению устаревших решений в разных отраслях новыми продуктами отрасли биотехнологий. Например, он будет помогать транспортным компаниям перейти на биотопливо вместо дизельного, а строительным – на новые биоматериалы вместо цемента и бетона. Использовать биотехнологии для очистки жидких сред.

3. «Эти специалисты нужны в ветеринарных и медицинских научных институтах, академических институтах, на предприятиях, связанных с биотехнологиями. Они не останутся без работы в лабораториях поликлиник и больниц, на агрономических селекционных станциях, в ветеринарных лабораториях и больницах. Порой именно они могут поставить наиболее достоверный и точный диагноз. Их исследования незаменимы для ранней диагностики онкологических заболеваний». Предположите, о людях какой специальности идёт речь в этих предложениях. Докажите свою точку зрения.

Наверное генетики. Занимаясь генетическим материалом могут работать в любых отраслях связанных с живыми организмами, будь то селекция или любая отрасль медицинских знаний.